
Transformation of a hand drawn flow
diagram into a digital image

 Tanya Bhadouria. Vidushi Parashar. Vikalp Arora
Computer Science and Engineering. Computer Science and Engineering. Computer Science and Engineering
 Sharda University Sharda University Sharda University
 Greater Noida, India Greater Noida, India Greater Noida, India

Abstract—The goal of this work is to apply the concepts of
perceptual grouping to digitize hand-drawn flow diagrams
and render an aestheticized image made of polygons and
connectors. We address typical imperfections in human
drawing such as missed intersections of lines, overshooting
of lines beyond the intersection point and curved line
segments. Our method works on camera acquired images
of flow diagrams and is able to handle illumination
variations, shadows and speckle noise in the input. In this
paper, we describe an algorithm to recognize all the types
of polygons connected through lines. We have tried to
redress many human errors and background noises.
Moreover, we have digitalized hand written text and placed
them into their respective positions. The scope of this
algorithm is not only hand drawn flow diagrams, but it can
also be modified to extend its application to architectural
drawings, circuit diagrams, or may be a toddler friendly
application to help them learn about polygonal shapes.

I. INTRODUCTION

We often face many situations where we need to
present our ideas in the form of flow diagrams, for they
are the best representations of dataflow concepts. The
easiest way to make a flow diagram is hand drawing on
paper using a pen. Therefore, our aim is to process an
image of a hand-drawn flow diagram of polygons and
will convert it into an aestheticized digital flow diagram.
We make use of the Gestalt principles of proximity,
continuity, connectedness and closure to recognize
polygons connected through lines. Our aim is to convert
a hand-drawn image consisting of polygons connected
through lines into a digitalised image, while removing the
human errors and other kinds of noise. The main feature
point of our algorithm is that it makes use of heuristics
which reduces time complexity. Human errors such as
broken edges, incomplete polygons (missed intersections
of line segments), crossing edges (line segments
overshooting past the intersection points) and somewhat
curved lines which are intended to be drawn as straight
lines. Discrete steps of the algorithm is shown in Figure
9.It also completes an incomplete polygon. Many times,
while drawing a polygon in a hurry, we do not complete
the figure, i.e. edges are open. Since our algorithm first
breaks a polygon into set of edges, therefore this human
error is automatically rectified. We achieved a high
accuracy of 93correct rendering of the intended convex
polygonal shapes on a dataset of more than 500 hand-
drawn polygons. The main feature point of our algorithm
is that it handles the problem heuristically, which reduces
time complexity in comparison to the existing works
based upon machine learning. Moreover, it handles many

forms of errors and noise. Cluttered and nested polygons
have also been worked upon successfully.

II. RELATED WORK

Previous research in hand-drawn shapes recognition is
done by either online or offline approach. Very few
research has been done in the field of offline approach.
In this paper, we discuss about the offline approach

For off-line sketch interpretation Notowidigdo and
Miller [1]developed UDSI (User Directed Sketch
Information) which used heuristic approach to recognize
3 shapes (Circle, Rectangle and Diamond) and arrows.
Shapes were recognized using corner detection, then a
heuristic filter is applied to recognize unrecognized
shapes (i.e. broken edges etc) and finally a greedy
elimination algorithm is run which provides an effective
filter among the false and true positives. But this work
was limited to recognition of only 3 shapes.

For recognition of hand-drawn flowcharts Wioleta
Szwoch and Micha Mucha [2], [3] created a Flow Chart
Analyzer (FCA) system for recognizing, understanding
and aestheti- cization of freehand drawing flow charts.
The recognition algorithm counts similarity measure of a
recognized figure and ideal patterns. If a recognized
figure does not match with any ideal pattern, then it is
considered as line. They used flowgram programming
approach to create the flowchart. One of the limitation of
this research is that the recognition is limited only to the
given ideal polygons. Unlike [1] and [2] our algorithm
can recognise every polygon.

Research on offline hand-drawn sketch using images of
pen-and-paper diagrams is less common. Valveny and
Marti [4] discussed a method for recognizing handdrawn
architectural symbols using deformable template
matching. They achieve recognition rates around 85%.
For digitization of hand-drawn diagrams Regina
Altmann [5]implemented generalised Hough Transform
to detect the shapes in the flowchart. However the
approach worked only for diagrams created with a digital
image editor and did not give correct results for camera
captured images of hand-drawn diagrams. Processing

International Journal of Scientific & Engineering Research Volume 13, Issue 7, July-2022
ISSN 2229-5518 892

IJSER © 2022
http://www.ijser.org

IJSER

time of this method was very large and memory
requirement was high.

Perceptual organization has been widely used in
computer vision to extract 2D and 3D structures and
generate descriptions [6] , [7] . Cohen and Deschamps
[8] used perceptual grouping to find a set of contour
curves in 2D and 3D images. Their method could find
new complete curves from a set of edge points. We adopt
the same philosophy of perceptual organization and
develop a computationally frugal method to identify
hand-drawn polygons and connectors. The input diagram
is broken down into line segments which are then
grouped to form polygons. The detailed steps are
described in Section III. Experimental results are given
in Section IV and the paper is concluded in Section V.

Generation of Slides from Hand-Drawn Sketches
(Muneeb Ahmed and Jeff Wheeler, 2014) used the
same approach for shape recognition as used [9] by us.
They separated every shape into line segments and
later joined those line segments using heuristic to
generate a digitalised image. But their algorithm
rejected the open shapes, crossing egdes, broken edges
and therefore is less robust. Whereas our research has
covered all possible human error.

III. ALGORITHM
The algorithm is developed in Python using OpenCV

libraries and various other image processing tools of
Python. All the discrete steps of the algorithm have been
explained in detail below.

A. Image Input
A web application implemented using Python flask

takes an image as an input which has a flowchart drawn
over it using hands. The image is captured using a smart-
phone camera whose camera specification ranges from 8
mega pixels to 21 mega pixels. The software is designed
to handle only completely focused images. This input
image is rescaled down to width of 850 to improve the
time of algorithm. Sample images can be seen in Figure
1 and Figure 2.

B. Image Binarization and Attenuation of noise
Beginning with the algorithm, we first binarize the

rescaled image using Adaptive threshold with varying
parameters suiting our image type. Adaptive thresholding
takes into account spatial variations in illumination and
thus eliminate the background noises, shadows and other
factors that could degrade the algorithmic performance.
Adaptive Binarization is a very critical step because it
separates out the actual figure from the background noise
and shadows, therefore allowing our algorithm to work
on any kind of paper, whether it is of good quality or bad,
ruled or blank.

Adaptive Thresholding leads to breaking of long
edges and some irregularity in the figure, therefore, to
make the curves smooth, morphological closing is

done. To apply morphological closing, first the image
is inverted so that the curves appear in white colour
with black background. The morphological close
operation is a dilation followed by an erosion, using the
same structuring element for both operations. In our
algorithm, we used 9x9 box structuring element.
Output of this step can be clearly seen from Figure 2 to
Figure 3.

Figure 2: Input image with noise

Figure 3: Inverted image with adaptive thresholding and morphological
closing

Figure 4: Final image with minimum noise and corner removed

c. Text region extraction
After Image Binarization and adaptive thresholding,

text regions need to be extracted and put into hand written
text recognition function. The process starts with finding
the connected components of the image. Then each
connected component is iterated once and bounding box
of the connected component is calculated. If the
bounding box is too small or large than a particular value,
then that could be considered as shapes of flowchart, else
it is the text region. Now that bounding box is cropped
and feeded into hand written text recognition function.

International Journal of Scientific & Engineering Research Volume 13, Issue 7, July-2022
ISSN 2229-5518 893

IJSER © 2022
http://www.ijser.org

IJSER

D. Hand written text recognition
Hand written text recognition is done using SVM.

This process consists of many parts. Firstly, we have to
train the neural network on a very large data set, and
secondly, we have to test it. We used NIST dataset for
handwritten text to train the network. We used support
vector machines (SVMs, also support vector networks)
which is a supervised learning models with associated
learning algorithms that analyze data used for
classification and regression analysis. SVM classifier
was used to train the network. After training, the network
was tested on 10% of the dataset, which resulted in the
accuracy of 97%.

Now after training of the network is done, we created
a function that takes out input, pre-process it properly and
finally feed it to the character recognizer function. We
have used Scikit-learn tool for using SVM classifier.
After the preprocessing, an image is given to the SVM
classifier to extract features and using the training
matrices, predict the character written there. Then finally
the predicted character is given as an output.

E. Placement of text in the image
After the character recognition algorithm returns the

correct character written, we place that character in a new
blank white image exactly at that position. After that, we
blackens the bounding box of that character from the
main image, so that the image can be given later to the
flow diagram aestheticization function. As you can
clearly see in the Figure 9 (b), firstly characters are
removed from the image and the left out image is
processed later.

Figure 5: Text Recognition from the image

F. Corner detection in the polygons
This algorithm separates all the figures in a set of

line segments and then using heuristics, joins them
together for shape recognition. To detect the corners in
the polygons and to separate out the connecting lines
from the figure, we use Harris Corner detector. Corner
is the intersection of two edges, i.e., it represents a
point at which the directions of these two edges
change. Therefore, the gradient of the image develops
a high variation, which can be used to detect corners.
OpenCV function for corner detection has many
parameters. We have adjusted them according to our
requirements, wherein we don’t want any corners to be
detected, if the angle between the edges is more than
150 degrees.

After corner detection, that point is marked with black.
Now, this point is enlarged, so as to disconnect the
edges of the polygon and leave the whole image with
line segments only as shown in Figure 4.

G. Line Detection
There are many ways to detect lines in an image.

We started from the Hough line transform, but the
results were not fruitful because Hough Line transform
is able to detect only straight lines whereas our image
has hand drawn lines which could range from being
straight to trigonometric curves of sine or cosine.
Therefore, we came up with an approximation
algorithm which will approximate a line segment with
a line equation.

For line detection, we have used contour analysis.
Python OpenCV has a function cv2.findContours()
which has many arguments like the image and the
contour approximation method. For our purpose, we
used cv2.CHAIN APPROX SIMPLE. It outputs all the
contours in the image.

After contour analysis, all the contours are sent to a
function which approximates these contours with a
straight line segment. The function iterates through
each contour and applies line approximation algorithm
over it. Line approximation algorithm works as
follows:

1) Use cv2.minEnclosingCircle() function over
the contour to find the smallest circle that
could enclose this contour completely. The
function gives radius and centre of the circle
as output. Logically considering the common
geometrical deductions, the diameter of this
circle will be the length of approximated line
segment. Therefore, any circle with diameter
less than a certain threshold value is
considered as noise and cleared out.

2) Second step of algorithm is approximating
the contour with a line equation. Python
OpenCV function cv2.fitLine() takes contour
value as input and outputs four points for the
line equation.

3) Now, we have the equation of the minimum
enclosing circle and the equation of the line.
Using these 2 equations, we find the points of
intersection, which are supposedly the end
points of the required line segment, and save
them in a list which stores all the line
segments.

Please refer to Figure 5 for pictorial
explanation. Output of this section is a list which
has the equations of all the line segments. By
equation, it is meant that it contains the end
coordinates of the line segments.

International Journal of Scientific & Engineering Research Volume 13, Issue 7, July-2022
ISSN 2229-5518 894

IJSER © 2022
http://www.ijser.org

IJSER

Figure 6: Algorithm for line detection

• The first image consists of 2 polygons connected
through a line. After corner detection and
removal, the image is left with only line
segments.

• The second image shows how our algorithm
works, by drawing a circle and an approximate
contour with lines and getting it’s intersection to
draw the straight lines.

H. Merge 2 lines into a single line disconnected due
to corner detection and Adaptive thresholding

 The list of line segments is iterated and analysis is
done over every pair of two different lines. Given 2 line
segments, there could be total 4 combinations of distance
between their end points. If the distance between any one
of the four combinations is less than a particular
threshold value (decided heuristically), then those 2 end
points are taken into analysis. Angle between those 2
lines is calculated and if the value of acute angle is less
than a heuristically decided threshold value, then those 2
line segments are merged together into a single line
segment and the list of line segments is updated
accordingly. The 2 line segments are marked using a
hash array and finally removed from the list of line
segments. Demonstration of this step is shown in Figure
6.

Figure 7: Broken/Discontinuous lines merged together

I. Join 3 concurrent line segments
The list of line segments is iterated and this time

every triplet of 3 different line segments is considered.
A total of 3 line segments means there would be 8
combinations of distances between their end points.
Similar to the previous sub section, if the distance
between any one of the eight combinations is less than
a decided threshold value, then those 3 end points are
merged together and this point of intersection of the
three respective lines is shifted to the centroid of those
3 points.

J. Join the line segments to form a complete polygon
Point of intersection is calculated for every pair of line
segments. Then the distance from point of intersection to
the 4 possible pairs of points is calculated. If any of the 4
combinations gives fruitful value, then it can be inferred
that these two line segments were actually intersecting in
the original image. After that, as shown in Figure 7, the
two end points near the point of intersection are changed
into the point of intersection.

Figure 8: The algorithm iterates through every line segment and tries to
make a closed polygon out of it.

K. Shape Detection
By the end of the previous subsection, we have a

list of all the line segments without any noise modified
such that all the discontinuous and intersecting lines
are joined together. Now, for shape detection, we call
a function that iterates through every line segment and
for that particular line segment, find the next line
segment joining it and continue to do the same. If for a
given line segment, no such next line segment is found,
it would mean that the shape is a straight line. We

International Journal of Scientific & Engineering Research Volume 13, Issue 7, July-2022
ISSN 2229-5518 895

IJSER © 2022
http://www.ijser.org

IJSER

implemented the shape recognition algorithm using
cycle detection in a forest of graphs. Considering each
line segment as a node in a graph where each node
consists of 2 end points, we created a graph and used
DFS (Depth First Search) using every node and if a
node contributes to a cycle, then those nodes are
removed. Basically after each iteration, if a cycle is
found, then those set of lines are removed and saved
into a list, and if no cycle is found, then that line is
pushed at the back of the list, and again cycle detection
algorithm is run. After few iterations, if no cycle is
found, then the algorithm stops and return a list
consisting of closed shapes, and another list consisting
of remaining lines. Algorithm for shape detection is
shown in Algorithm 1 and 2.

Algorithm 1 Shape Detection algorithm
1: procedure GETCLOSEDPOLYGON(line list) . line

list is an arroy of line segments
2: polygon list ← []. List of polygon identified

3: count ← 0 . Count the number of iteration of loops
4: while line list is not empty and count 6= len(line list)
do . This loop choses first line of the

line list and find if it is a part of a cycle or not
5: count ← count + 1
6: visited ← [] . visited bool array initialized to false
7: first ← line list[0]. first line in line list
8: vertices first.x ,first.y first.x ,first.y

. Initialize a list of vertices for tracing a polygon
9: visited[0] ← False . Marking first line

visited

check,vertices =
11: if check == True then
12: polygon list.append(vertices) . Append newly

found polygon
13: line list.remove(vertices) . Delete detected lines

from line list
14:

 else. Remove the first line and push it in back
15:
16:
17: return list . line list contains remaining lines

L. Recognition of arrow heads
After the execution of shape recognition algorithm,

we have a list that contains all the shapes and another
list, that contains all remaining lines. Those remaining
lines are considered as connecting lines and arrow
heads. Now all these lines are again analysed and if any
three lines intersect again at a single point, then that
means 2 shorter line among those 3 lines are arrows.
Therefore, that corner of line is considered as arrow
head. As you can see in Fig 8, there is a line with a arrow

head which is finally retained and get separated from
other shapes.

Figure 9: The image clearly shows how arrows are separated from the
shapes and line incident on the rhombus is adjusted accordingly.

M. Shape Recognition
After the previous step, we have a list whose each
element in turn has a list of points in anti-clockwise or
clockwise manner depicting the vertices of a polygon.
A list has ’n’ pointstands for a polygon with ’n-1’
sides. This step involves recognizing different types of
polygon and coming up with a generalised algorithm
to draw it. There are 4 functions made for drawing the
polygon i.e. parallelogram, rectangle, ’n’ sided
polygon and a line, and 2 other functions to check if
the quadrilateral is a rhombus or a parallelogram. The
description of these functions is as follows:

1) Check rhombus function basically calculates

the length of the diagonals and their slopes. If
the length is nearly same, and angle between the
diagonals is approximately 90 degrees, then the
quadrilateral is a rhombus.

2) Check parallelogram function is called after the
check rhombus function. Thus reducing the
possibility of the quadrilateral being a rhombus.
This function calculates the length of the
diagonals, and if the length of one of the
diagonal is greater than the other, then it is
concluded to be a parallelogram.

3) Draw parallelogram function is called if check
parallelogram approves that the quadrilateral is
a parallelogram. This function first calculates
the length and the values of slopes of both the
diagonals. Then, taking the shorter diagonal as
the primary diagonal to draw the figure, the
function shortens the larger diagonal so that the
parallelogram is parallel to the x-axis. Then we
use Python OpenCV function cv2.line()
function to draw line on the image.

4) Draw rectangle function is called if the the
quadrilateral is neither rhombus nor
parallelogram. Draw rectangle function is
capable of drawing both, rectangles and
squares. This function uses the same technique
as the draw parallelogram function, i.e., it first
calculates the length of both the diagonals and
then takes shorter one to draw the rectangle. We
know that if the rectangle is parallel to x-axis,
given a diagonal, we can easily find the other
two coordinates of the second diagonal.
Following this, cv2.line() function is used to
draw all the lines.

International Journal of Scientific & Engineering Research Volume 13, Issue 7, July-2022
ISSN 2229-5518 896

IJSER © 2022
http://www.ijser.org

IJSER

5) Draw regular polygon is a generalised function
that can draw a regular convex polygon of any
number of sides. If values of vertices are given
in continuous way, it first calculates the
centroid of the polygon using an algorithm. To
draw a regular polygon, we need a centre as
well as a radial distance at which all the vertices
will exist. Therefore, average distance of all the
current vertices from the centroid is taken as
radius.
Now taking the first point as the point just
above the centroid at a distance equal to the
radius, we find out the coordinates of all the
other points in clockwise manner to make a
regular polygon. Using these continuous points,
a regular polygon is drawn on the image.

6) For drawing a line segment, we use an inbuilt
function of Python OpenCV, cv2.line() which
takes 2 arguments as starting and ending points
of the line segment and an image on which the
line has to be drawn.

Algorithm 2 Cycle Detection Recursion Function
(DFS)

1: procedure RECURPOLY-

 line_list, vertices, visited

 Last point
of vertices for matching

3: second check ← vertices[−2] . Second last point
for same line check

4: for each line in line list do
5: v1 ← [line.x1,line.y1] . Possbility of any two end

points to match
6: v2 ← [line.x2,line.y2]
7: if next vertex == v1 and second check 6= v2 then
8: if visited[line] == False then . If match found and

it’s not visited
9: visited[line] ← True . Mark the line visited

vertices.append(v2)
11: if vertices[−1] == vertices[0] then . If first and last

points are same, then cycle is found
12: return True,vertices
13: check,list till =

RECURPOLYGON(line list,vertices,visited)
14: if check == True then .

If recursive function gives True, then that means the
path made a complete cycle

15: return True,listtill
16: else. Backtracking
17: vertices.pop()
18: else
19: return False,empty

20:
 then

if next vertex == v2 and second check 6= v1

21: if visited[line] == False then. . Similar
steps as previous one

22: visited[line] ← True

23: vertices.append(v1)

24: if vertices[−1] == vertices[0] then

25: return True,vertices

26: check,list till =
RECURPOLYGON(line list,vertices,visited)

27: if check == True then
28: return True,listtill
29: else
30: vertices.pop()
31: else
32: return False,empty
33: return False,empty . If nothing match is found,

then it will not make a cycle

N. Adjustment of edges according to the
rendered shapes

After recognition of different shapes and rendering it
on a blank image, the edges incident on those shapes
must be adjusted accordingly. As you can see in Figure
8, after rendering a perfect shape, the new shape is
compared with the original one, and if any edge was
incident on the original one, then the end points of that
edge is changed according to the new shape.

(a) Input image

International Journal of Scientific & Engineering Research Volume 13, Issue 7, July-2022
ISSN 2229-5518 897

IJSER © 2022
http://www.ijser.org

IJSER

(b) Noise removal using Adaptive thresholding and
Morphologicalclosing, Character detection and removal
from the main image

(c) Corner detection and removal from the image

(d) Joining the line segments to complete a polygon and placement
ofrecognized text back to the image

(e) Shape detection, recognition and drawing of perfect shape with
adjustment of the connecting lines

Figure 10: Steps of the algorithm

V. EXPERIMENTAL SETUP
In order to evaluate the recognition algorithm, we

asked more than 100 subjects to draw 5 polygons of
each type. The polygons were namely triangle,
square, rhombus, rectangle, parallelogram, pentagon,
hexagon and few shapes with a line connecting them.

Each subject drew the figures on a blank white paper
with blue dot pen. Nothing prior information was
given to the subjects about the size or shape of the
polygon for which our algorithm can work best.
Subjects were told that the input is for shape
recognition, therefore they did not draw any other non
polygonal or open shape.

VI. RESULTS

Our algorithm is able to detect the closed polygonal
shapes connected using a line, thus making an
aestheticized figure of the hand drawn flowchart. It is
also able to neglect some human errors, rectifying them
and extraction of hand written text and recognition. Some
of the salient features of the algorithm are as follows:

1) Using adaptive thresholding, morphological
closing and ignoring small line segments, our
algorithm is able to remove maximum noise
and human error from the image.

2) It is able to extract and recognize hand written
character upto an accuracy of 97%.

3) Our algorithm is able to separate the polygon
from the connecting lines and detect them.

4) It also takes human error into consideration. If
an edge is not continuous, it joins them
together

5) It also completes an incomplete polygon.
Many times, while drawing a polygon in a
hurry, we do not complete the figure, i.e. edges
are open. Since our algorithm first breaks a
polygon into set of edges, therefore this
human error is automatically rectified.

6) Sometimes, we mistakenly draw crossing
edges in the figure. During edge detection, our
algorithm divides a crossing edge into 2 parts,
i.e. an actual edge and a small line segment
that crossed the other edge. The small line
segment is treated as noise and removed from
the analysis.

7) Our algorithm is able to recognize polygons
from clutter of shapes. Shapes close to another
shapes are easily separated.

8) As shown in Figure 11 , our algorithm is also
able to distinguish shapes nested into other
shapes. For example, if a square lies inside a
triangle, it is detected separately.

9) Our generalised algorithm can draw a polygon
with any number of sides. It uses a formula to
find centroid and takes mean distance of all the
vertices from the centroid as radius to draw a
regular convex polygon.

(a)Input test image with clutter

International Journal of Scientific & Engineering Research Volume 13, Issue 7, July-2022
ISSN 2229-5518 898

IJSER © 2022
http://www.ijser.org

IJSER

 (b) Recognition of shapes in clutter

Figure 11: Clutter of shapes

(a) Input test image with square in side triangle

(b) Recognition of both shapes

 Figure 12: Nested Shapes

10)As shown in Figure 12, it is able to distinguish
between a rectangle, square, parallelogram and a
rhombus from a given 4 sided polygon.

Our algorithm can easily detect an isolated ellipsoid
figure, but an ellipsoid figure connected using a line
with some other polygon is broken due to corner
detection algorithm. Therefore, that figure is
approximated as a line segment.

Of all the test cases given as inputs to our
application, we could generate desired outputs for 93
percent of them. When considered specifically for each
polygon, we could detect a triangle correctly 97% of
the times, and differentiate between different
quadrilaterals 93% of the times. Averaging out, it
would not be wrong to stipulate an efficiency of 93%
for this algorithm.

Figure 13: Different quadrilaterals

 Figure 14: Different test cases worked upon

VII. CONCLUSION AND FURTHER SCOPE

We were able to implement the algorithm to detect
polygons. However, our algorithm only detects a
flowchart without ellipsoid shapes. Further works can be
done to develop a new approach for detecting and
recognizing ellipsoid shapes. Features like detection of
cluttered and nested images can be used for further work
in the digitalization of hand drawn architectural
drawings.

Reference

[1] M. N. a. R. C. Miller, "“Offline-sketch

interpretation,” in Making Pen-Based Interation
Intelligent and Natural," AAAI Fall Sym- posium,
Menlo Park, California, 2004.

[2] W. Szwoch and M. Mucha, " Recognition of
Hand Drawn Flowcharts.," Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013.

International Journal of Scientific & Engineering Research Volume 13, Issue 7, July-2022
ISSN 2229-5518 899

IJSER © 2022
http://www.ijser.org

IJSER

[3] W. Szwoch, "Aestheticization of Flowcharts.,"
Berlin, Heidelberg: Springer Berlin Heidelberg,,
2008.

[4] E. Valveny and E. Marti, "“Application of
deformable template matching to symbol
recognition in hand-drawn architectural drawings,”,"
Inter- national Conference on Document Analysis
and Recognition,, 1999.

[5] R. Altmann, "“Digitization of hand drawn
diagrams,”," Thesis, Aalto University School of
Sicence and Technology, Helsinki, Helsinki,, 2015.

[6] G. N. Khan and D. F. Gillies, " “Extracting
Contours by Perceptual Grouping,”," 1992.

[7] R. Mohan and R. Nevatia, "“Using perceptual
organization to extract 3-D structures,”," 1989.

[8] L. D. Cohen and T. Deschamps, " “Grouping
connected components using minimal path
techniques. Applications to reconstruction of vessels
in 2D and 3D images,”," Proc. Computer Vision and
Pattern Recognition,, 2001.

[9] Muneeb Ahmed and Jeff Wheeler, "Generation
of Slides from HandDrawn Sketches," Stanford
University, 2014.

International Journal of Scientific & Engineering Research Volume 13, Issue 7, July-2022
ISSN 2229-5518 900

IJSER © 2022
http://www.ijser.org

IJSER

